你的位置: 首页 > 公开课首页 > 互联网/语言 > 课程详情

details

人工智能:机器学习和深度学习

暂无评价   
你实际购买的价格
付款时最多可用0淘币抵扣0元现金
购买成功后,系统会给用户帐号返回的现金券
淘课价格
6200
可用淘币
0
返现金券
待定

你还可以: 收藏

培训受众:




架构师、分析师、项目经理、高级程序员、资深开发人员、人工智能工程师、图像处理工程师、机器学习工程师、模式识别工程师以及未来可能从事人工智能研发的?#38469;?#20154;员。


课程大纲:


培训内容
第一讲 人工智能简介
1.1 什么是人工智能
1.2 为什么要人工智能
1.3 人工智能的发展简史
1.4 人工智能的现实案例举例
第二讲 最优分类面和支持向量机
2.1 什么是最优分类面
2.2 支持向量机的本质是什么
2.3 支持向量机在线?#22278;?#21487;分时怎么办
2.4 支持向量机中核函数如何选择
2.5 支持向量机在车牌识别中的应用案例
第三讲 决策树
31 什么是非数值特征
3.2 为什么要引入决策树
3.3 如何设计决策树
3.4 如何构造随机森林
3.5 决策树在医疗系统中的应用案例
第四讲 深度学习之始:人工神经网络
4.1 人工神经网络的设计动机是什么
4.2 单个神经元的功能
4.3 人工神经网络的优化以及误差逆传播(BP)算法
4.4 人工神经网络中需要注意的问题
4.5 人工神经网络在表情识别、流量预测中的应用案例
第五讲 深度学习中的?#35760;?#21644;注意事项
5.1 深度学习中过学习问题的处理
5.2 如何选择损失函数
5.3 如何并行化
5.4 如何解决深度学习中梯度消失问题
5.5 如何选择激励函数
5.6 权值衰减、Dropout以及新的网络架构
第六讲 卷积神经网络
6.1 卷积以及卷积网络的概念
6.2 为什么在使用卷积网络
6.3 卷积网络的结构设计
6.4 卷积网络在围棋中的应用
6.5 卷积神经网络在图像识别中的应用案例
第七讲 循环神经网络
7.1 为什么要使用循环神经网络
7.2 1-of-N编码
7.3 循环神经网络的介绍
7.4 长短期记忆网络
7.5 长短期记忆网络在自然语言处理中的应用案例
第八讲 人工智能未来展望
8.1 监督学习中的新应用
8.2 强制学习中的新应用
8.3 非监督学习中的新应用
8.4 DeepMind介绍
第九讲 使用支持向量机进行车牌识别
第十讲 使用深度学习进行?#20013;?#20307;识别、人脸识别以及自然语言处理





司老师


清华大学博士,人工智能方面专家,在意大利举办的国际在线指纹识别竞赛中获得冠军,在机器学习和模式识别领域顶级期刊IEEE TPAMI等期刊发表多篇论?#27169;?#25317;有5个中国专利和1个美国专利,是人工智能、深度学习、机器学习和图像处理和模式识别领域的实战派专家。



课程对象


架构师、分析师、项目经理、高级程序员、资深开发人员、人工智能工程师、图像处理工程师、机器学习工程师、模式识别工程师以及未来可能从事人工智能研发的?#38469;?#20154;员。



本课程名称: 人工智能:机器学习和深度学习

查看更多:互联网/语言公开课

需求分析 相关的最新课程
讲师动态评分 与同行相比

授课内容与课纲相符00%

讲师授课水平00%

服务态度00%

女强电竞文笔好完结小说
汇辰彩票的网址 斗牛手机游戏 扑克赌博三公技巧大全 MG娱乐登录 打麻将必胜绝技 时时彩平台评测网 横财三肖三码 亿游国际平台app下载 口袋棋牌 欢乐生肖是官方彩吗 大地网投不给提现 时时彩技巧视频 巴黎澳门人线上平台 比分直播球探网007 快乐时时开奖号码 加拿大pc28软件